• Home
  • Engineering
  • Scientific Services & Research
  • Products
  • Quote
  • Contact
  • Store
  • News

Enabling next level research on roots - automatizing MiniRhizotron Image Acquisition and Analysis [2019-2020]

NextMR-IAA featured by ATTRACT

NextMR-IAA Root Image Aaalysis Pipeline

NextMR-IAA project description

CNN pipeline developed within the NextMR-IAA project

Minirhizotron (MR) imaging systems are key instruments to study the hidden half of plants and ecosystems, i.e. roots, mycorrhiza and their interactions with pathogens, fauna etc. in the rhizosphere. MR systems allow taking repeated images of roots etc. growing in soil (at specific depths) at the interface with transparent MR tubes; time between imaging must be shorter than the shortest turnover (expected).

In the last 20 years, MR imaging systems have received increasing interest in the fields of agronomy, forestry and ecology. However, despite scarce data on the “hidden half” of plants and ecosystems, e.g. needed for better understanding species’ ecophysiology, breeding resource efficient crops or determining soil C input via root litter, the technological advances remain yet limited. Potentially the high degree of instrument specialisation, and the subsequent lack of investment, led to only minor improvements of the available MR imaging technology and image analysis software.

Currently, the state of the art in MR imaging instrumentation are either camera or scanner-based RGB system with limited resolution (300 dpi) — positioned and operated manually. Image analysis (e.g. for root tracking) is done, despite various efforts in the last decade to develop automated protocols, still largely based on manual overlays on images by human operators. Thus, the potential of MR imaging systems in plant and soil sciences but also in agriculture e.g. to support agricultural management decisions, such as fertiliser application and irrigation scheduling according to the phenological status of the (crop) root (especially rooting depth and density), is not realised yet.

 

The NextMR-IAA project (2019 - 2020) will

  1. combine state-of-the-art imaging sensors (UHD VIS and certain near infrared (NIR) wavebands) with imaging automation to allow for effective and precise imaging, and
  2. will develop machine learning-based approaches to automatically segmentate & classify roots.

NIR wavebands will e.g. allow for standardised root classification into dead and living and will thus significantly enhance the calculation of root turnover rates and subsequently information on ecosystems’ C budgets. Parallel soil moisture estimations will allow to continuously determine a key parameter influencing root growth.

 

The NextMR-IAA system will combine imaging technology, mechatronic automation and image analysing technology in a unique and highly innovative way to significantly advance the MR technology. The proposed technology has the potential to benefit society both indirectly via improving the capacity of researchers to study root and rhizosphere systems (e.g. in a C budgeting or plant breeding context), and directly via making root development information available to farmers in real time for precision farming (e.g. for early detection of (root) pests, or to optimise fertilisation and irrigation). 

Report

Download
Scientific journal-type article, summarising the main results and methodology
NextMR-IAA_ATTRACT_Final_Conference_arti
Adobe Acrobat Document 538.4 KB
Download

NextMR-IAA Project Partners

University of Natural Resources and Life Sciences Vienna
Ben-Gurion University of the Negev

Funding Source

NextMR-IAA Funding claim EU

Further information NextMR-IAA

Download
Presentation NextMR-IAA during Kick-off meeting, CERN, Geneva (20-21.05.2019)
Project pitch Next-MR-IAA
ATTRACT-1_NextMR-IAA.pdf
Adobe Acrobat Document 3.1 MB
Download
Download
Presentation NextMR-IAA, pre-Final Conference, online (31.05.2020)
NEXTMR_IAA ATTRACT-pre FINAL CONFERENCE
Adobe Acrobat Document 306.5 KB
Download
  • Scientific Services
  • Research
    • Cross-Sectoral Collaboration
    • BarleyMicroBreed
    • HuLK Humus
    • C-SALS
    • NextMR-IAA (ATTRACT)
    • FutureArctic
    • ISO-Drone
    • Conference Presentations
1 including tax
About | Terms | Return Policy | Privacy Policy | Cookie Policy | Sitemap
© 2017-2023 Vienna Scientific Instruments GmbH. All rights reserved. Print this page
Log out | Edit
  • Home
  • Engineering
    • Product Development
    • Prototyping
    • Custom-made Spare Parts
    • Field Technical Services
  • Scientific Services & Research
    • Scientific Services
    • Research
      • Cross-Sectoral Collaboration
      • BarleyMicroBreed
      • HuLK Humus
      • C-SALS
      • NextMR-IAA (ATTRACT)
      • FutureArctic
      • ISO-Drone
      • Conference Presentations
  • Products
    • Soil Sampling
      • Soil Corer
      • Soil Core Storage
      • Soil Ring Sampler
      • Topsoil & Root Corer
      • Soil Water Sampler
      • Root Washer
      • ** Soil Sampling Web Store
    • Soil Moisture Monitoring
      • Drill & Drop Probe
      • EnviroScan Precission
      • Diviner 2000
    • Rhizobox Systems
      • Rhizoboxes
      • RhizonBoxes
      • Hydroponic RootBoxes
      • Racks & Light Shielding
      • Imaging & Manipulation Stands
      • Rhizobox Respiration Chambers
      • Rhizobox Irrigation
      • * Rhizobox Configuration Form
      • ** Rhizobox Web Store
    • Rhizotrons & Root Windows
    • Germination Paper-Based Phenotyping & Bioassays
      • Root Phenoboxes
      • Growth Pouches
      • Pouch Phenoracks and Stands
      • * Growth Pouch Configuration Form
      • ** Growth Pouch Web Store
    • Root & Rhizobox Imaging
      • Rhizobox Imaging
      • RhizoPot Scanner
      • Benchtop Root Analyzer
      • 2D Root Scanner
      • Root Scanning Trays
      • ** Root Imaging Web Store
    • Minirhizotron Systems
      • Manual MR Systems
      • Semi-Automatic MR Systems
      • Automatic MR Systems
      • Minirhizotron Tubes
      • Coring System for MR Tubes
      • ** Minirhizotron Web Store
    • Shoot Phenotyping
      • Phenobox
    • Air Sampling & Gas Flux
      • Automatic Air Sampler
      • UAV Air Sampler
      • Vial Evacuator
      • HT Gas Flux Autosampler LAB
      • Teflon / PTFE Chambers
      • Ecosystem Respiration Chambers
    • Insect Rearing & Research
      • Tray and Rack Larval Systems
      • Larvae Mass Rearing Trays
      • Automated Larval Feeding
      • Rearing / Oviposition Cages
      • Oviposition Brushing Machine
      • Insect Sex Separator
      • Insect Collector
      • Release Cages
      • Insect Chill Plates
      • Farming Tray Systems
    • Animal Behavior & Physiology
      • Harness Housings
      • Ports (Photo interrupter Sensors)
      • Operant Boxes
    • Laboratory Instruments
      • Biobase Catalog
      • Labtare Catalog
    • Open-hardware
    • Distributed Products / Retail
  • Quote
    • Quote - Soil Water Sampling
    • Quote - Insect Chill Tables
  • Contact
    • Distributors
    • Contact Form
      • Contact - BTC (North America)
      • Contact - Edaphic Scientific (Australia, New Zealand)
      • Contact - Eco-Mind (China)
    • Partners & Customers
    • Customer Support
      • FAQs
      • Calibration, Maintenance & Repairs
      • Returns
      • Meet Us
    • Mailing List
    • Social Media
    • Vacancies
    • About VSI
  • Store
  • News
  • Scroll to top