• Home
  • Engineering
  • Scientific Service & Research
  • VSI Products
  • Distributed Products
  • Contact
  • Store

Enabling next level research on roots - automatizing MiniRhizotron Image Acquisition and Analysis [2019-2020]

Contact - NextMR-IAA Office

Contact the project coordinator (Prof. Dr. Boris Rewald) and the consortium (BGU, BOKU and VSI researchers) via email nextmr-iaa@boku.ac.at.

NextMR-IAA featured by ATTRACT

It is a great honour that ATTRACT consortium has selected the NextMR-IAA project for a feature story! Check the ATTRACT web page for NextMR-IAAs current achievements and some challenges within the highly successful project, and the benefits of the ATTRACT funding scheme

NextMR-IAA project description

Minirhizotron (MR) imaging systems are key instruments to study the hidden half of plants and ecosystems, i.e. roots, mycorrhiza and their interactions with pathogens, fauna etc. in the rhizosphere. MR systems allow taking repeated images of roots etc. growing in soil (at specific depths) at the interface with transparent MR tubes; time between imaging must be shorter than the shortest turnover (expected).

In the last 20 years, MR imaging systems have received increasing interest in the fields of agronomy, forestry and ecology. However, despite scarce data on the “hidden half” of plants and ecosystems, e.g. needed for better understanding species’ ecophysiology, breeding resource efficient crops or determining soil C input via root litter, the technological advances remain yet limited. Potentially the high degree of instrument specialisation, and the subsequent lack of investment, led to only minor improvements of the available MR imaging technology and image analysis software.

Currently, the state of the art in MR imaging instrumentation are either camera or scanner-based RGB system with limited resolution (300 dpi) — positioned and operated manually. Image analysis (e.g. for root tracking) is done, despite various efforts in the last decade to develop automated protocols, still largely based on manual overlays on images by human operators. Thus, the potential of MR imaging systems in plant and soil sciences but also in agriculture e.g. to support agricultural management decisions, such as fertiliser application and irrigation scheduling according to the phenological status of the (crop) root (especially rooting depth and density), is not realised yet.

 

The NextMR-IAA project will

  1. combine state-of-the-art imaging sensors (UHD VIS and certain near infrared (NIR) wavebands) with imaging automation to allow for effective and precise imaging, and
  2. will develop machine learning-based approaches to automatically segmentate & classify roots.

NIR wavebands will e.g. allow for standardised root classification into dead and living and will thus significantly enhance the calculation of root turnover rates and subsequently information on ecosystems’ C budgets. Parallel soil moisture estimations will allow to continuously determine a key parameter influencing root growth.

 

The NextMR-IAA system will combine imaging technology, mechatronic automation and image analysing technology in a unique and highly innovative way to significantly advance the MR technology. The proposed technology has the potential to benefit society both indirectly via improving the capacity of researchers to study root and rhizosphere systems (e.g. in a C budgeting or plant breeding context), and directly via making root development information available to farmers in real time for precision farming (e.g. for early detection of (root) pests, or to optimise fertilisation and irrigation). 

Report

Download
Scientific journal-type article, summarising the main results and methodology
NextMR-IAA_ATTRACT_Final_Conference_arti
Adobe Acrobat Document 538.4 KB
Download

NextMR-IAA Project Partners

University of Natural Resources and Life Sciences Vienna
Ben-Gurion University of the Negev

Funding Source

Further information NextMR-IAA

Download
Presentation NextMR-IAA during Kick-off meeting, CERN, Geneva (20-21.05.2019)
Project pitch Next-MR-IAA
ATTRACT-1_NextMR-IAA.pdf
Adobe Acrobat Document 3.1 MB
Download
Download
Presentation NextMR-IAA, pre-Final Conference, online (31.05.2020)
NEXTMR_IAA ATTRACT-pre FINAL CONFERENCE
Adobe Acrobat Document 306.5 KB
Download
  • LINK to ATTRACT project website
  • Scientific Services
  • Research
    • Cross-Sectoral Collaboration
    • BarleyMicroBreed
    • HuLK Humus
    • C-SALS
    • NextMR-IAA (ATTRACT)
    • FutureArctic
    • ISO-Drone
    • Conference Presentations

 Questions? Get in contact!

Mr. Seehra, CEO: +43 650 69 74 672

PD Dr. Rewald: +43 677 611 99 406

Mr. Mayer: +43 650 35 89 412 

Email: office@vienna-scientific.com

WhatsApp

News

New Root Box Design by VSI

RHIZOBOX DESIGN 

New cost & transport efficient, durable rhizobox design!

UAV-based Air Sampling

UAV AIR SAMPLING

UAV-based air sampler are now scientifically tested and available!

AS-21 Automatic minirhizotron camera system for root imaging

AUTOMATIC UHD ROOT IMAGER

AC-21 camera for 24/7 root imaging in situ!

Scientific Editing Services by VSI

SCIENTIFIC SERVICES

We review & edit your scientific documents and grant applications!

BLOG

Vienna Scientific Instruments - HOME

Vienna Scientific Instruments GmbH

Heiligenkreuzer Str. 466, 2534 Alland, Austria


 

1 including tax
About | Terms | Return Policy | Privacy Policy | Cookie Policy | Sitemap
© 2017-2023 Vienna Scientific Instruments GmbH. All rights reserved. Print this page
Log out | Edit
  • Home
  • Engineering
    • Product Development
    • Prototyping
    • Custom-made spare parts
    • Field Technical Services
  • Scientific Service & Research
    • Scientific Services
    • Research
      • Cross-Sectoral Collaboration
      • BarleyMicroBreed
      • HuLK Humus
      • C-SALS
      • NextMR-IAA (ATTRACT)
      • FutureArctic
      • ISO-Drone
      • Conference Presentations
  • VSI Products
    • Soil Sampling
      • Soil corer
      • Soil core storage
      • Soil ring sampler
    • Rhizobox & Phenotyping Systems
      • Rhizoboxes
      • RhizonBoxes
      • Hydroponic RootBoxes
      • Rhizobox Racks
      • Rhizobox Cooling Racks
      • Rhizobox Respiration Chambers
      • Rhizobox Stands
      • Growth Pouch Systems
      • Root Phenoboxes
      • Rhizobox Webstore
    • Minirhizotron Systems
      • Minirhizo-StarterSet
      • Manual MR Systems
      • Semi-Automatic MR Systems
      • Automatic MR Systems
      • MR Tubes
      • Coring Systems for MR Tubes
      • Discontinued MR Systems
    • Gas Flux Systems
      • Ecosystem respiration chambers
      • PTFE Chambers
      • Automatic Air Sampler
      • UAV Air Sampler
      • Vial Evacuator
      • HT Gas Flux Autosampler LAB
    • Insect Rearing
      • Rearing / Oviposition Cages
      • Tray and Rack Larval Systems
      • Larvae Mass Rearing Trays
      • Automated Larval Feeding
      • Oviposition Brushing Machine
      • Insect Sex Separator
      • Insect Collector
      • Release Cages
      • Farming Tray Systems
    • Behavior Experiments
      • Harness Housings
      • Ports (Photo interrupter Sensors)
      • Operant Boxes
    • Labware & Co.
    • Open-hardware
      • PhenoBox
      • Syringe Pump
      • Microinjection Dispenser
      • ROBucket
  • Distributed Products
    • Bartz Technology Cooperation
    • Eco-mind
    • Epson 2D Root Scanner
    • Labtare USA
    • Rhizosphere Research Products
      • Soil Water Samplers
      • Rhizobox Irrigation
  • Contact
    • Contact Form
    • Distributors
      • Contact - BTC (North America)
      • Contact - Edaphic Scientific (Australia, New Zealand)
      • Contact - Eco-Mind (China)
    • Partners & Customers
    • Customer Support
      • FAQs
      • Returns
      • Calibration, Maintenance & Repairs
      • Terms of Service (pdf)
      • Privacy Policy (pdf)
      • Meet Us
    • News
    • Mailing List
    • Social Media
    • About VSI
  • Store
  • Scroll to top